BS EN 60079-28:2007 Incorporating

corrigendum July 2014

Part 28: Protection of equipment and transmission systems using optical with

ICS 29.260.20

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

National foreword

This British Standard is the UK implementation of EN 60079-28:2007. It is identical to IEC 60079-28:2006.

The UK participation in its preparation was entrusted to Technical Common EXL/31, Equipment for explosive atmospheres. A list of organizations represented on this committee can be optimed on request to its secretary.

sary provisions of a

The publication does not purport to include all the recessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 May 2007

Amendments/corrigenda issued since publication

© The British Standards	Date	Comments
Institution 2014. Published by BSI Standards Limited 2014	31 July 2014	Implementation of IEC Interpretation sheet March 2014 in National annex NA
ISBN 978 0 580 86414 8		

National Annex NA

(informative)

-	TC 31/IEC 60079-28:20	06, First edition/I	-SH 01		m
Par	TC 31/IEC 60079-28:20 Explosive ati t 28: Protection of equ systems using of INTERPRETAT	nospheres – ipment and tran optical radiation	smission	lges.co),,,,
	INTERPRETAT	TION SHEED	19		
Equipment for explosive	atmospheres		lechinc	al committee	31:
The text of this interpret	ation she is based on	the following doo	cuments:		
	ISH	Report on votir	ng		
	31/1102/ISH	31/1114/RVD			

Full information on the voting for the approval of this interpretation sheet can be found in the report on voting indicated in the above table.

IEC 60079-28:2006 (1st edition) *Explosive atmospheres – Protection of equipment and transmission systems using optical radiation*

Following decision No 12 of the TC 31 meeting in Melbourne in 2011, the issuing of an Interpretation Sheet for IEC 60079-28:2006 (1st edition) was requested, in order to clarify the scope of the existing standard.

Question

Does the scope of this standard cover

- 1) non-array divergent LEDs;
- 2) luminaires;
- 3) optical radiation sources for Mb, Gb or Gc applications which comply with Class 1 limits in accordance with IEC 60825-1;
- 4) single or multiple optical fibre cables not part of optical fibre equipment; or
- 5) enclosed equipment involving an enclosure that fully contains the optical radiation and that complies with a suitable type of protection?

Answer

This standard applies to optical fibre equipment and optical equipment, including LED and laser equipment, with the exception of the equipment detailed below:

- 1) Non-array divergent LEDs used for example to show equipment status or backlight function.
- All luminaires (fixed, portable or transportable), hand lights and caplights (other than for Group I) intended to be supplied by mains (with or without galvanic isolation) or powered by batteries
 - with continuous divergent light sources (for all EPLs);
 - with LED light sources (for EPL Gc only).

- i -

- accordance with IEC 60825-1. 4) Single or multiple optical fibre cables not part of optical fibre equipment if the cables
- comply with the relevant industrial standards, along with additional protective refers, e.g. robust cabling, conduit or raceway (for Gb, Mb or Gc);
 comply with the relevant industrial standards (for Gc).
 5) Enclosed equipment involving an enclosure that fully contains the optical radiation and that complies with a suitable type of protection as required by the involved EPL, with the
- that complies with a suitable type of protection as required by the involved EPL, with the enclosure complying with one of the following conditions
 - an enclosure for which an ignition due Coptical radiation in combination with absorbers inside the enclosure volumble acceptable (such as flameproof "d" enclosures). or enclosures), or
 - an enclosure for which poo ction regarding ingress of an explosive atmosphere is provided, such as press anzed "p" enclosures, restricted breathing "nR" enclosure", or
 - an enclosure for which protection regarding ingress of absorbers is provided (such as _ IP 6X enclosures) and where no internal absorbers are to be expected.

NOTE For these scope exclusions it is anticipated that the enclosures are not opened in the explosive atmosphere, so that ingress is protected.

EUROPEAN STANDARD

EN 60079-28

NORME FUROPÉENNE

EUROPÄISCHE NORM

March 2007

ICS 29.260.20

Explosive atmospheres -on of equipment and trans using optical radiation UNEC 60079-28:2006) Part 28: Protection of equipment and transmission systems

Atmosphères explosives Partie 28: Protection du matériel et des systèmes de transmission utilisant le rayonnement optique (CEI 60079-28:2006)

Explosionsfähige Atmosphäre -Teil 28: Schutz von Einrichtungen und Übertragungssystemen, die mit optischer Strahlung arbeiten (IEC 60079-28:2006)

This European Standard was approved by CENELEC on 2006-10-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 2007 CENELEC -All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Foreword

The text of document 31/631/FDIS, future edition 1 of I for explosive atmospheres, was submitted to the IEC CENELEC as EN 60079-28 on 2006-10-01.	C-CENELEC parallel vote and was approved by
The following dates were fixed:	unes.us
 latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement 	hina-gauges.com

latest date by which the national standards conflicting with the EN have to be withdrawn
 This European Standard has the Output of the Output of the Standard has the Output of the Outp

This European Standard has beep prepared under a mandate given to CENELEC by the European Commission and the European Free Trade Association and covers essential requirements of EC Directive 94/9/EC. See Annex ZZ.

2009-10-01

(dow)

Annexes ZA and ZZ have been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 60079-28:2006 was approved by CENELEC as a European Standard without any modification.

CONTENTS

ΙΝΤ	RODUCTION	······
1	RODUCTION Scope Normative references Terms and definitions General requirements 4.1 Optical equipment 4.2 Risk levels Types of protection 5.1 General 5.2 Requirements for integration safe optical radiation "op is"	``6./0
2	Normative references	7
3	Terms and definitions	7
4	General requirements	10
	4.1 Optical equipment	10
	4.2 Risk levels	10
5	Types of protection	11
	5.1 General	11
	5.3 Requirements for protected optical radiation "op pr"	
	5.4 Optical radiation interlock with optical fibre breakage "op sh"	
~	5.5 Suitability of types of protection	
6	Type verifications and tests	
	6.1 Test set-up for ignition tests	
	6.2 Reference test6.3 Test mixtures	
	6.4 Tests for pulse trains and pulses between 1 ms and 1 s duration	
7	Marking	
	7.1 General	
	7.2 Marking information	
	7.3 Examples of marking	
An	nex A (normative) Reference test data	19
Anı	nex B (informative) Ignition mechanisms	20
Anı	nex C (normative) Ignition hazard assessment	
Anı	nex D (informative) Typical optical fibre cable design	
	nex E (informative) Introduction of an alternative risk assessment method compassing "equipment protection levels" for Ex equipment	
Anr	nex ZA (normative) Normative references to international publications with their	
cor	responding European publications	36
Anı	nex ZZ (informative) Coverage of Essential Requirements of EC Directives	
Bib	liography	
	ure 1 – Figure B.1 with limit lines for intermediate areas for non-combustible gets, T1 – T4 atmospheres, apparatus group IIA, IIB or IIC	12
	ure B.1 – Minimum radiant igniting power with inert absorber target (α_1 _{nm} =83 %, $\alpha_{805 \text{ nm}}$ =93 %) and continuous wave-radiation of 1 064 nm	23
	ure B.2 – Minimum radiant igniting power with inert absorber target (α_1 _{nm} =83 %, $\alpha_{805 \text{ nm}}$ =93 %) and continuous wave-radiation (PTB: 1 064 nm, HSL: 5 nm, [24]: 803 nm) for some n-alkanes	24
	ure C.1 – Ignition hazard assessment	
-	ure D.1 – Example multi-fibre optical cable design for heavy duty applications	
-	ure D.2 – Typical single optical fibre cable design	
9		

Table 1 – Relationship between EPL and the probability of an ignition source	10
Table 2 – Safe optical power and irradiance for hazardous locations categorized by apparatus group and temperature class	. 11
Table 3 – Optical interlock availability or ignition risk reduction factor by EPL	G t₄V
Table 4 – Application of types of protection for optic systems based on EPLs.	15
Table A.1 – Reference values for ignition tests with a mixture of propane in a fatter of the state of the sta	19
Table B.1 – AIT (auto ignition temperature), MESG (maximum experimental safe gap) and measured ignition powers of the chosen combustives for mert absorbers as the target material ($\alpha_{1\ 064\ nm}$ =83 %, $\alpha_{805\ nm}$ =93)	22
Table B.2 – Comparison of measured minimum uniting optical pulse energy ($Q_{e,p}^{i,min}$) at 90 µm beam diameter with auto ignition temperatures (AIT) and minimum ignition	
energies (MIE) from interature (ϕ) and oncentrations in percent by volume (ϕ)	25
Table E.1 – Traditional relationship of EPLs to zones (no additional risk assessment)	31
Table E.2 – Description of risk of ignition protection provided	32

INTRODUCTION

Optical equipment in the form of lamps, lasers, LEDs, optical fibers, etc. is increasingly used for communications, surveying, sensing and measurement. In material processing, on radiation of high irradiance is used. Often the installation is inside or close to po explosive atmospheres, and radiation from such equipment may pass though these atmospheres. Depending on the characteristics of the radiation it might them wable to ignite a surrounding explosive atmosphere. The presence or absence of the radiational absorber significantly influences the ignition.

- a) Optical radiation is absorbed by surface per particles, causing them to heat up, and, under certain circumstances, this may aver them to attain a temperature which will ignite a surrounding explosive atmosphere
- b) Thermal ignition of a Nume, where the optical wavelength matches an absorption band of the gas.
- c) Photochemical ignition due to photo dissociation of oxygen molecules by radiation in the ultraviolet wavelength range.
- d) Direct laser induced breakdown of the gas at the focus of a strong beam, producing plasma and a shock wave both eventually acting as the ignition source. These processes can be supported by a solid material close to the breakdown point.

The most likely case of ignition occurring in practice with lowest radiation power of ignition capability is case a). Under some conditions for pulsed radiation, case d) also will become relevant.

Optical equipment is used in most cases in conjunction with electrical equipment, for which clear and detailed requirements and standards for use in potentially explosive atmospheres exist. One purpose of this standard is to inform industry about potential ignition hazards associated with the use of optical systems in hazardous locations as defined in IEC 60079-10 and the adequate protection methods.

This standard details the integrated system used to control the ignition hazard from equipment using optical radiation in hazardous locations.

EXPLOSIVE ATMOSPHERES –

Part 28: Protection of equipment and transmission systems using optical radiation Part 28: Protection of equipment and transmission systems

be guaranteed by assessment or beam strength measurement.

This standard contains requirements for optical radiation in the wavelength range from 380 nm to 10 μ m. It covers the following ignition mechanisms:

- optical radiation is absorbed by surfaces or particles, causing them to heat up and, under certain circumstances, this may allow them to attain a temperature which will ignite a surrounding explosive atmosphere;
- direct laser induced breakdown of the gas at the focus of a strong beam, producing plasma and a shock wave both eventually acting as the ignition source. These processes can be supported by a solid material close to the breakdown point.

NOTE 1 See items a) and d) of the introduction.

This standard does not cover ignition by ultraviolet radiation and by absorption of the radiation in the explosive mixture itself. Explosive absorbers or absorbers that contain their own oxidizer as well as catalytic absorbers are also outside the scope of this standard.

This standard specifies requirements for equipment intended for use under atmospheric conditions.

This standard supplements and modifies the general requirements of IEC 60079-0. Where a requirement of this standard conflicts with a requirement of IEC 60079-0, the requirement of this standard will take precedence.

NOTE 2 Although one should be aware of ignition mechanism b) and c) explained in the introduction, they are not addressed in this standard due to the very special situation with ultraviolet radiation and with the absorption properties of most gases (see Annex B).

NOTE 3 Safety requirements to reduce human exposure hazards from fibre optic communication systems are found in IEC 60825-2:2000.

NOTE 4 Types of protection "op is", "op pr", and "op sh" can provide equipment protection levels (EPL) Ga, Gb, or Gc. For further information, see Annex E.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest conton of the referenced document (including any amendments) applies. IEC 60079 (all parts), *Electrical apparatus for explosive gas atmosphere*

gas and spheres IEC 60079-0, Electrical apparatus for explosive Part 0: General

IEC 60079-10, Electrical apparatus for expressive gas atmospheres – Part 10: Classification of hazardous areas

IEC 60079-11, Explosive atm eres – Part 11: Equipment protection by intrinsic safety "i"

IEC 60825-2, Safety of laser products – Part 2: Safety of optical fibre communication systems

IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems

IEC 61511 (all parts), Functional safety - Safety instrumented systems for the process industry sector

3 **Terms and definitions**

For the purposes of this document, the terms and definitions given in IEC IEC 60079-0 and the following apply.

NOTE Additional definitions applicable to explosive atmospheres can be found in IEC 60050-426 [1]¹.

3.1

absorption

in a propagation medium, the conversion of electromagnetic wave energy into another form of energy, for instance heat

[IEV 731-03-14]

3.2

beam diameter (or beam width)

the distance between two diametrically opposed points where the irradiance is a specified fraction of the beam's peak irradiance

[IEV 731-01-35]

NOTE Most commonly applied to beams that are circular or nearly circular in cross section.

3.3

beam strength

a general term used in this standard referring to an optical beam's power, irradiance, energy, or radiant exposure

¹ Figures in square brackets refer to the bibliography.

3.4

core

cladding that dielectric material of an optical fibre surrounding the core [IEV 731-02-05] 3.6 fibre bundle an assembly of unbuffered optical fibres [IEV 731-04-09]

3.7

fibre optic terminal device

an assembly including one or more opto-electronic devices which converts an electrical signal into an optical signal, and/or vice versa, which is designed to be connected to at least one optical fibre

[IEV 731-06-44]

NOTE A fibre optic terminal device always has one or more integral fibre optic connector(s) or optical fibre pigtails(s).

3.8

inherently safe optical radiation

visible or infrared radiation that is incapable of producing sufficient energy under normal or specified fault conditions to ignite a specific hazardous atmospheric mixture

NOTE This definition is analogous to the term "intrinsically safe " applied to electrical circuits.

3.9

irradiance

the radiant power incident on an element of a surface divided by the area of that element

[IEV 731-01-25]

3.10

light (or visible radiation)

any optical radiation capable of causing a visual sensation directly on a human being

[IEV 731-01-04]

NOTE 1 Nominally covering the wavelength in vacuum range of 380 nm to 800 nm.

NOTE 2 In the laser and optical communication fields, custom and practice in the English language have extended usage of the term light to include the much broader portion of the electromagnetic spectrum that can be handled by the basic optical techniques used for the visible spectrum.

3.11 minimum ignition energy

MIE

MIE lowest electrical energy stored in a capacitor which upon discharge is sufficient to effective ignition of the most ignitable explosive atmosphere under specified test conditions. 3.12 optical fibre filament shaped optical waveguide made of dielectric materials [IEV 731-02-01] 3.13 optical fibre cable an assembly comprising one ar nore optical fibres or fibre bundles inside a common covering designed to protect them as an explore optical fibres of the fibres while retaining the transmission qualities of the fibres while retaining the transmission qualities of the fibres

[IEV 731-04-01]

3.14

optical fibre communication system OFCS

engineered, end-to-end assembly for the generation, transference and reception of optical radiation arising from lasers, LEDs or optical amplifiers, in which the transference is by means of optical fibre for communication and/or control purposes

3.15 free space optical communication system FSOCS

an installed, portable, or temporarily mounted, through-the-air system typically used, intended or promoted for voice, data or multimedia communications and/or control purposes via the use of modulated optical radiation produced by a laser or IR-LED. "Free space" means indoor and outdoor optical wireless applications with both non-directed and directed transmission. Emitting and detecting assemblies may or may not be separated.

NOTE The above definitions are from IEC TC 76. This standard is not only dealing with "communication systems", so a more general definition could be useful.

3.16 optical (or radiant) power the time rate of flow of radiant energy with time

[IEV 731-01-22]

3.17

optical radiation

electromagnetic radiation at wavelengths in vacuum between the region of transition to X-rays and the region of transition to radio waves, that is approximately between 1 nm and 1 000 μ m

[IEV 731-01-03]

NOTE In the context of this standard, the term "optical" refers to wavelengths ranging from 380 nm to 10 µm.

3.18

protected optical fibre cable

optical fibre cable protected from releasing optical radiation into the atmosphere during optical fibre cable protected from releasing optical radiation into the atmosphere during normal operating conditions and foreseeable malfunctions by additional armouring, conditional armouring, conditinal armouring, conditional armouring, conditional armouring, con

[IEV 393-14-84, modified, and IEV 845-01-42, modified] ²⁾

4 **General requirements**

4.1 **Optical equipment**

All electrical parts and circuits inside and outside optical equipment shall comply with the appropriate standards for electrical apparatus.

4.2 **Risk levels**

Three different equipment protection levels Ga, Gb, Gc are defined (see Annex E). Table 1 shows the relationship between the EPL and the probability of an ignition source:

EPL	Protection required
Ga	Ignition not likely with one fault and two independent faults or in the case of rare malfunctions
Gb	Ignition not likely with one fault or in the case of expected malfunctions
Gc	Ignition not likely in normal operation

An ignition hazard assessment, as given in Annex C, has to be carried out to identify the ignition mechanisms and ignition sources caused by the specific working principle of the equipment using optical radiation.

The types of protection selected from section 5 to protect the specific equipment depend on this ignition hazard assessment considering the table of ignition probabilities given above for the different EPLs.

NOTE In IEC TC 31, the introduction of "equipment protection levels (EPL) Ga, Gb, Gc" was decided.

² IEC 60050-393:2003, International Electrotechnical Vocabulary (IEV) - Part 393: Nuclear instrumentation -Physical phenomena and basic concepts

5 Types of protection

Three types of protection can be applied to prevent ignitions by optical radiation in prientially explosive atmospheres. These types of protection encompass the entire optical system.
These types of protection are
a) inherently safe optical radiation, type of protection "op bit";
b) protected optical radiation, type of protection optical";
c) optical system with interlock, type of protection "op sh".

safe optical radiation "op is" 5.2 **Requirements for**

5.2.1 General

Inherently safe optical radiation means visible or infrared radiation that is incapable of supplying sufficient energy under normal or specified fault conditions to ignite a specific explosive atmosphere. The concept is a beam strength limitation approach to safety. Ignition by an optically irradiated target absorber requires the least amount of energy, power, or irradiance of the identified ignition mechanisms in the visible and infrared spectrum. The inherently safe concept applies to unconfined radiation and does not require maintaining an absorber-free environment.

NOTE Research to date [17-22] has concluded the following values of visible and infrared beam strength are safe for explosive gas atmospheres. The safe values incorporate a modest safety factor on observed ignition values obtained under severe test conditions. Ignition of a carbon disulfide-air mixture has been reported recently using 24 mW optical power.

5.2.2 Continuous wave radiation

Optical powers or optical irradiance shall not exceed the values listed in Table 2, categorized by apparatus group and temperature class. The irradiance values are safe up to a maximum irradiated surface area of 400 mm². For irradiated surface areas above 400 mm², the temperature limits of the relevant temperature class apply. Table 2 contains information on combustible and on non-combustible absorbers. As an alternative to Table 2, for intermediate target surface areas where combustible solid targets can be excluded safe power values can be drawn from Figure 1.

Apparatus group	I	IIA	IIA	IIB		с
Temperature class		Т3	T4	Τ4	T4	Т6
Temperature class (°C)	<150	< 200	< 135	< 135	< 135	< 85
Power (mW)	150	150	35	35	35	15
Irradiance (mW/mm ²) (surface area not exceeding 400 mm ²)	20ª	20ª	5	5	5	5
^a For irradiated areas greater than 30 mm ² where combustible materials may intercept the beam, the 5 mW/mm ² irradiance limit applies.						

Table 2 – Safe optical power and irradiance for hazardous locations categorized by apparatus group and temperature class

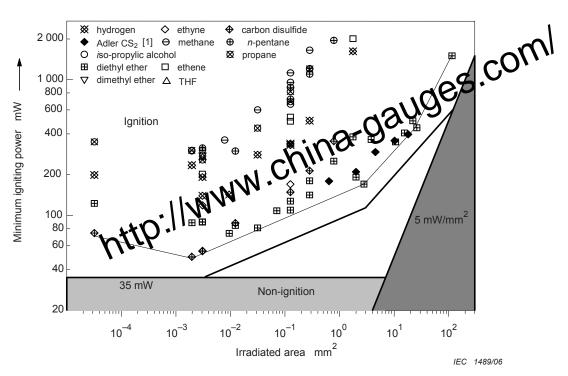


Figure 1 – Figure B.1 with limit lines for intermediate areas for non-combustible targets, T1 – T4 atmospheres, apparatus group IIA, IIB or IIC

5.2.3 Pulsed radiation

For optical pulse duration of less than 1 ms, the optical pulse energy shall not exceed the minimum spark ignition energy (MIE) of the respective explosive gas atmosphere.

For optical pulse duration between 1 ms and 1 s, an optical pulse energy equal to 10 times the MIE of the explosive gas atmosphere shall not be exceeded.

For optical pulse duration greater than 1 s, the peak power shall not exceed the safety levels for continuous wave radiation (see 5.2.2, Table 2). Such pulses are considered as continuous wave radiation.

For optical pulse trains, the single pulse criterion applies for each pulse. With repetition rates above 100 Hz, the average power shall not exceed the safety levels for continuous wave radiation. With repetition rates below 100 Hz, a higher average power may be applicable if demonstrated by tests according to Clause 6.

5.2.4 Ignition tests

Ignition tests to demonstrate inherent safety may be performed in special cases such as

 beams of intermediate dimensions or duration that may exceed the minimum optical ignition criteria but are still incapable of causing ignition;

- beams with complex time waveforms so that pulse energies and/or average power are not easily resolved;
- specific atmospheres, targets, or other specific applications that are demonstrably less severe than test conditions studied to date.

The test shall be done with 10 samples of the light source as specified in Clause **C** The test is passed if there is no ignition during the 10 tests. **5.2.5 Optical devices incorporating the inherently safe concert**Optical devices incorporating the inherently safe concert shall provide over-power/energy fault protection to prevent excessive beam strengths in potentially explosive atmospheres. The risk/hazard analysis shall determine whet these additional devices are required. The failure modes of the optical source, the supply barrier, and the presence of an explosive atmosphere shall be considered outring normal operation and during fault conditions to determine the requirement for fully the supply barrier.

Optical sources such as laser diodes or light-emitting diodes will fail if over-heated under over-power fault conditions. The thermal failure characteristic of certain optical sources may provide the necessary over-power fault protection (test of 10 samples).

Electrical circuits such as current and/or voltage limiters placed between the optical source and the electrical power source can provide over-power fault protection similar to intrinsically safe circuits.

Over-power fault protection shall be provided to the degree necessary for the intended EPL (see for example IEC 60079-11). For Ga equipment, for example, current and/or voltage limiters shall provide over-power fault protection after two countable faults are applied to the current and/or voltage limiter. For Gb equipment, the two-fault requirement can be reduced to one failure. For Gc equipment the rated values shall be taken without assuming any fault. The thermal failure characteristic of certain low power optical sources such as light-emitting diodes is acceptable to provide adequate over-power protection for any EPL.

5.3 Requirements for protected optical radiation "op pr"

5.3.1 General

This concept requires radiation confined inside optical fibre or other transmission medium based on the assumption that there is no escape of radiation from the confinement. In this case, the performance of the confinement defines the safety level of the system.

The risk analysis provides the safety requirements based on postulated conditions (fault conditions or normal operation).

Optical fibre may be used for situations where there are no postulated conditions so that an external force may cause a break of the protective barrier. Additional protective means (e.g. robust cabling, conduit or raceway) shall be used when external forces may cause a break during normal or abnormal operations. The risk analysis will dictate the protective measures required to prevent a break and escape of radiation.

Where enclosures are used, they may allow an ignition source inside without igniting the atmosphere outside, provided they meet the requirements of the standard types of protection concerned (IEC 60079 series).

5.3.2 Radiation inside fibre, etc. (no mechanical damage to be expected)

The optical fibre protects the release of optical radiation into the atmosphere during normal operating conditions. For foreseeable malfunctions, this can be provided by additional armouring, conduit, cable tray, or raceway.
5.3.3 Radiation inside enclosures
Incendive radiation inside enclosures is acceptable if the enclosure ramplies with recognised types of protection for electrical apparatus where an igniting double may be present inside

types of protection for electrical apparatus where an ignitian course may be present inside (flameproof "d" enclosure, pressurised "p" enclosure, restricted breathing enclosure...) according to IEC 60079 series. It shall, however, b Considered, that any radiation escaping from the enclosure has to be protected according to this standard.

Optical radiation interloct with optical fibre breakage "op sh" 5.4

This type of protection is applicable when the radiation is not inherently safe with interlock cut-off if the protection by the confinement fails and the radiation becomes unconfined on time scales suitably shorter than the ignition delay time.

The interlock cut-off shall be required to perform according to the requirements defined by the risk analysis. The methods given in appropriate standards (e.g. IEC 61508, IEC 61511) may be used to analyse equipment performance to have an availability or risk reduction factor, depending on the equipment protection level, as shown in Table 3.

Table 2 Ontidal interleak availability	v ar ignition rick reduction feater by EDI
Table $3 = Oblical Interlock availabilit$	y or ignition risk reduction factor by EPL
	,

EPL	Safety availability	Ignition risk reduction factor
Ga	0,999 to 0,9999	1 000 to 10 000
Gb	0,99 to 0,999	100 to 1 000
Gc	0,9 to 0,99	10 to 100

NOTE The values listed in Table 3 were derived from recommendations of the SAFEC report (Wilday 2000).

Where it can be demonstrated by the ignition hazard assessment (see Annex C), that the conditions for ignition are not attained readily after breakage of the fibre, shut down times used for eye protection purposes may be used (see IEC 60825-2:2000). This will typically be the case for Gc equipment, but may also apply for Gb equipment.

5.5 Suitability of types of protection

Where the ignition hazard assessment given in Annex C shows that ignitions due to optical radiation are to be expected, the following principles of using the types of protection can be applied.

Type(s) of protection	Ga	Gb	Gc
Inherently safe optical radiation "op is" (see 5.2)			
Safe with two faults	Yes	Yes	ح. 3.00
Safe with one fault	No	Yes Yes	Yes
safe in normal operation	No	dana	Yes
Protected fibre optic media with ignition capable beam "op pr" (see 5.3)	hind	-9-	
With additional mechanical protection	C/Nº.	Yes	Yes
With additional mechanical protection Without additional mechanical protection	No	No	Yes
Protected fibre optic media with ignition capable term interlocked with fibre breakage "op sh" (See 9.4)			
With additional mechanical protection	Yes	Yes	Yes
Without additional mechanical protection	No	Yes	Yes
None (unconfined, ignition capable beam)	No	No	No

Table 4 – Application of types of protection for optic systems based on EPLs

6 Type verifications and tests

6.1 Test set-up for ignition tests

6.1.1 Test vessel

Diameter >150 mm, height above ignition source >200 mm.

6.1.2 Energy and power measurements

Total uncertainty of energy and power measurement shall be less than 5 % relative, including variations of light source.

6.1.3 Ignition criterion

A temperature increase of at least 100 K, measured by a 0,5 mm diameter thermocouple bead, 100 mm above the hot spot, or the appearance of a flame.

6.1.4 Mixture temperature

40 °C or the maximum temperature of the specific application.

6.1.5 Mixture pressure

Ambient pressure according to IEC 60079-0.

6.1.6 Safety factor

A safety factor of 1,5 for cw radiation and 3 for pulsed radiation shall be applied to all results (as non-ignition results) obtained by the tests according to 6.3 or 6.4 before using these data as inherently safe data.

Where no ignition can be obtained during test (e.g. because the power or energy cannot be increased further more in the test), this factor shall also be applied to the highest non incendive beam strength data obtained.

Another possibility to obtain safe beam strength data (including a safety factor) is to use a test gas that is more sensitive to ignition. For cw-equipment to be used in IIA/T3 atmospheres, this test gas can be ethene up to a size of the beam area of about 2 mm².

NOTE As the ignition by a small hot surface is a process containing considerable statistical deviation. One of factor is justified. Due to the same reason, great care is to be applied when judging experiments is non-intendive because small variations in test parameters may influence the results remarkably.
6.2 Reference test
6.2.1 Reference gas
Propane-air-mixture of 5 % or 4 % by volume, see Table A.1 (for ignition tests with continuous wave radiation and pulses above 1 s putation) respectively 4 % by volume (for pulsed radiation, single pulses below 1 ms quration), quiescent mixture.
6.2.2 Reference absolution

6.2.2 Reference absolo

Absorption at investigated wavelength above 80 %, to be applied on the transmission fibre tip (fibre optics), or compressed respectively applied to an inert substrate (free beam transmission).

NOTE Experiments showed that for pulses in the micro and nanosecond range, a carbon black absorber gives lowest igniting pulse energies (absorption 99 %, combustible, high decomposition temperature) [17,20,22].

6.2.3 Reference test for continuous wave radiation and pulses above 1 s duration

The irradiated reference absorber has to be physically and chemically inert for the duration of the test. The absorber is needed to have very high absorption to nearly act as a black body. The set-up should be tested with the reference gas and absorber at 40 °C. For the testing of fibre optics, the absorber should be applied to the fibre tip in a very thin layer (~ 10 μ m) (as a powder in suspension and dried afterwards). The reference values are given in Annex A (Table A.1). The test setup is acceptable if the achieved ignition values are not more than 20 % above the data from Table A.1. The absorber has to be undamaged at the end of the test.

For the testing of free beam transmission the smallest diameter of the beam should hit a plane layer of the target material applied to a substrate or compressed. The reference values are to be taken from Table A.1 for the respective beam diameter. The test setup is acceptable if the achieved ignition values are not more than 20 % above the data from Table A.1. The absorber has to be undamaged at the end of the test.

6.2.4 Reference test for pulsed radiation below 1 ms pulse duration

The irradiated reference absorber should be irradiated from the front (free beam irradiation) during all pulse tests. For the testing of free beam transmission the smallest diameter of the beam should hit a plane layer of the target material applied either to a substrate or is compressed to form a pellet. The reference value for a beam diameter of 90 µm is 499 µJ pulse energy for pulses of 90 ns and 600 µJ for pulses of 30 ns. The set-up should be tested with the reference gas and absorber at 40 °C. The test setup is acceptable if the achieved ignition values are not more than 20 % above the data from Table B.1.

NOTE Background information for the reference values are given in the literature [20].

6.3 **Test mixtures**

6.3.1 Ignition tests with continuous wave radiation and pulses above 1 s duration

2 ... arr, 1,5 % by volume, and diethyl ether, 12 % by volume.
If only diethyl ether is used, the minimum ignition powers or irradiented obtained have to be divided by a factor of 4 for further use.
6.3.1.2 For T4/IIA, T4/IIB and T4/IIC atmospheres the biline of the bi

Propane in air, 5 % by volume.

6.3.1.4 For special applications

The atmosphere under consideration.

6.3.2 Ignition tests with single pulses below 1 ms duration

6.3.2.1 For IIC atmospheres

 H_2 in air, 12 % and 21 % by volume or CS_2 in air, 6,5 % by volume.

6.3.2.2 For IIB atmospheres

Ethene in air, 5,5 % by volume.

6.3.2.3 For I and IIA atmospheres

Diethyl ether, 3,4 % by volume or propane in air, 4 % by volume; divide minimum ignition energies obtained with propane by 1.2 for further use.

6.3.2.4 For special applications

The atmosphere under consideration.

6.4 Tests for pulse trains and pulses between 1 ms and 1 s duration

Apply test configuration according to 6.3.1 and then test configuration according to 6.3.2, absorbers and mixtures as specified in 6.1 to 6.3.

7 Marking

7.1 General

The apparatus using optical radiation shall be additionally marked with the following.

7.2 Marking information

The marking shall include

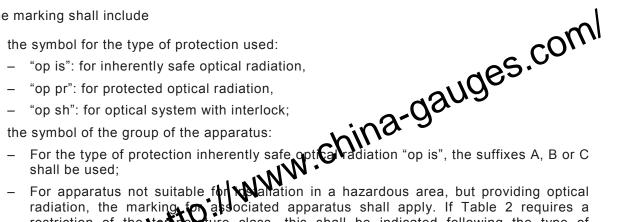
- a) the symbol for the type of protection used:
- b) the symbol of the group of the apparatus:

 - radiation, the marking for associated apparatus shall apply. If Table 2 requires a restriction of the temperature class, this shall be indicated following the type of protection. Example: [Ex op is T4 Gb] IIC;
- c) equipment protection level Ga, Gb or Gc as determined by Table 4;
- d) a serial number, except for:
 - connection accessories; optical fibre cables, etc.,
 - very small apparatus on which there is limited space.

7.3 **Examples of marking**

- Apparatus which is complying with EPL Ga:

Ex op is IIC T6 Ga


Apparatus which is complying with EPL Gb:

Ex op pr II T4 Gb

Apparatus, which is installed outside the hazardous area and providing optical radiation to the hazardous area, limit values taken from Table 2:

[Ex op is T3 Ga] IIA

The certificate shall identify the relevant EPL of the equipment (there may be more than one EPL for the different parts of the equipment).

Annex A

(no	rma	tive)
-----	-----	-------

	(110111101110)	1
	Reference test data values for ignition tests with a at 40 °C mixture temperature Minimum igniting power at 1 064 nm (absolution: 83 %, 5 %	unes.com
Table A.1 – Reference	values for ignition tests with a at 40 °C mixture temperature	mix the of propane in air
Fibre core diameter	Minimum igniting power at 1 064 nm (abs diptivin: 83 %, 5 % protated by volume)	Minimum igniting power at 805 nm (absorption: 93 %, 4 % propane by volume)
μm	mW	mW
62,5 (125 µm cladding)	250	
400	842	690
600		1 200
1 500		3 600
NOTE The absorber was attached	to the end of an optical fibre and irradiate	d continuously.

NOTE Other reference test data (e.g. for 8µm core diameter, 1 550 nm wavelength) are currently not available.

Annex B

(informative)

The potential hazard associated with optics in the infrared approximation of the infrared approx

- irradiation time.

There is an immense number of combinations of these factors that will influence the hazard of optics in explosive atmosphere and at least the ignition mechanism. Worst case conditions arise when an absorber is present. When the dimensions of the radiation and or the absorber fall below the quenching distance of the explosive gas, the ignition can be seen as point ignition. However, radiation from the end of a fibre optic cable diverges rapidly and the irradiated area may reach dimensions of square centimetres. The conditions for ignition can be characterised in terms of the fundamental parameters energy, area and time.

	Area tends to	Time tends to	Ignition criterion
(1)	zero	infinity	minimum power
(2)	infinity	infinity	minimum irradiance
(3)	zero	zero	minimum energy
(4)	infinity	zero	radiant exposure

Infinite time means continuous wave radiation. The research results for small and big areas are given in Table B.1, Figure B.1 and Figure B.2. In both regimes, ignition takes place via hot surface ignition when the beam hits an absorber. The smaller the surface, the higher the igniting irradiance. This means that a smaller surface has to be heated to higher temperatures to cause an ignition. No ignition was observed below 50 mW optical power for all gas/vapour mixture (excluding carbon disulfide). This supports the maximum permissible power value of 35 mW including a safety margin, which also has to consider the non-ideal grey body absorption of the inert absorber. Experiments with reactive absorbers (coal, carbon black and a toner) showed, that even though they have higher absorption, they were less effective as ignition sources. The n-alkanes do not ignite below 200 mW (150 mW including safety margin). For bigger irradiated areas, a permissible value of 5 mW/mm² is much more realistic than a restrictive power criterion.

³ The information provided in this annex is taken from reference [17] of Bibliography.

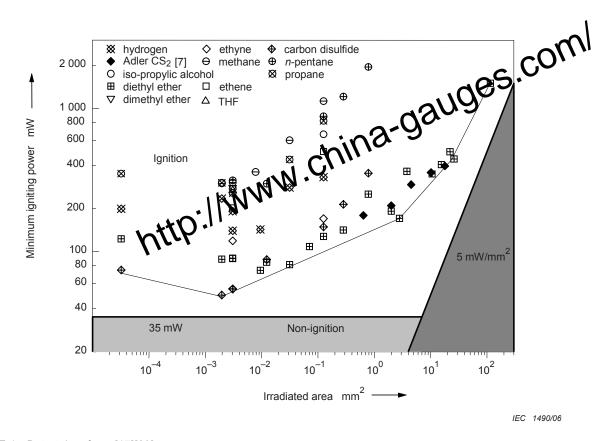
In the small area short time regime, a laser pulse can create an ignition source similar to an electric spark by a breakdown in air. It is known from the literature [26] that such spark with

electric spark by a breakdown in air. It is known from the literature [26] that such spark with an energy approaching the electrical minimum ignition energy (MIE) is able to ignite an explosive mixture under optimised conditions (µs and ns pulses).
The effectiveness of this ignition process depends on
pulse length and repetition rate,
wavelength,
target (absorber) material,
irradiance and radiant exposure.
Microsecond pulses and nanosecond pulses with energies close to the MIE were found to ignite explosive mixtures as shown in Table B.2. In this case, the combustible carbon black target is the most effective approper. The properties of carbon black support this breakdown in comparison to the iner material chosen in the continuous wave experiments (very high absorption, high decomposition temperature, electron-rich structure and combustibility). For absorption, high decomposition temperature, electron-rich structure and combustibility). For pulses in the millisecond range without a breakdown process but heating of the target, ignition energies are more than one order of magnitude higher than the electrical MIE. Here, the inert grey body is the ideal absorber. Pulses longer than 1 s should be treated as continuous wave radiation.

For pulse trains, the ignition criterion for each individual pulse is the energy criterion given above when the pulse is shorter then 1 s. With higher repetition rates, the previous pulse might have an influence on the behaviour of the irradiated area with the actual pulse. For repetition rates greater than 100 Hz, the average power should be restricted to the continuous wave limit. This limitation forces a maximum repetition rate for a defined pulse energy. The shorter the pulse, the higher the permissible peak power but the longer the duty cycle. This gives time for cooling of the target or decay of a spark or plume of hot material. Experiments showed [20] that for nanosecond pulses in the range of the MIE (up to 400 μ J), a spark lifetime of more than 100 µs is not to be expected for a beam diameter of 90 µm. For long pulse duration >1 s, the peak power should be restricted to the corresponding cw-limit.

The remaining combination of fundamental parameters, i.e. short times over infinite area, can be evaluated by the results for the other regimes.

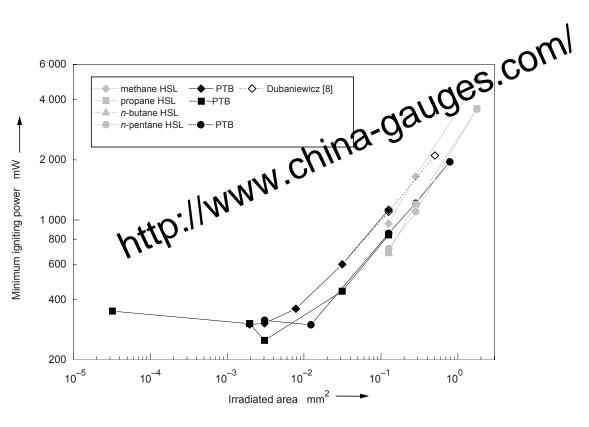
а	ind measured	d ignitio	on power target m	rs of the ch naterial (α ₁	nosen con _{064 nm} =83	nbustibles 5 %, α _{805 n}	s for iner _m =93)	t absorb	ers as th	
Group according to IEC 60079-0	Combustible In brackets: increased mixture temperature	AIT °C	MESG mm	Conc. comb. ^a at min. ignition power PTB* . (1064 nm) % vol.	Min. ignition power 62,5 µm fibre PTB . (1064 nm) mW	Min. ignition power 400 µm fibre PTB . (1064 nm triv	Conc. comb. at min. ignition power (805 nm) % vol.	Min. ignition power 100 MBE HSL (803 nm) mW	Minio igittibn power 600 μm fibre HSL (803 nm) mW	Min. ignition power 1500 µm fibre HSL (803 nm) mW
IIA	Methane	595	1,14	5,0	304 C	1125	6,0	960	1 650	5 000
	Acetone	535	1,04	(SAL	Nía.	-	8	830	-	-
	2-propanol	425	0,99	5,0 	273	660	-	-	-	-
	N-pentane	260	6,13	3,0	315	847	3,0	720	1 100	3 590
	Butane	410 (365)	(0,98)	-	-	-	4,6	680	-	-
	Propane	470	0,92	5,0	250	842	4,0	690	1 200	3 600
	Petrol unleaded	300 (350)	>0,9	-	-	-	4,3	720		3 650
	N-heptane	220	0,91	3,0	-	502	-	-	-	-
	(110 °C)									
	Methane/ hydrogen	595	0,90	6,0	259	848	-	-	-	-
IIB	Diethyl ether/ n-heptane (110 °C)	200	0,90	4,0	-	658	-	-	-	-
	Tetra- hydrofuran	230	0,87	6,0	267	-	-	-	-	-
	Diethyl ether	175	0,87	12,0	89	127	23,0	110	180	380
	Propanal (110 °C)	190	0,84	2,0	-	617	-	-	-	-
	Dimethyl ether	240	0,84	8	280	-	-	-	-	-
	Ethene	425	0,65	7,0	202	494	7,5	530	-	2 007
	Methane/ hydrogen	565	0,50	7,0	163	401	-	-	-	-
IIC	Carbon disulphide	95	0,37	1,5	50/24**	149	-	-	-	-
	Ethyne	305	0,37	25,0	110	167	-	-	-	-
	Hydrogen	560	0,29	10,0	140	331	8,0	340	500	1 620

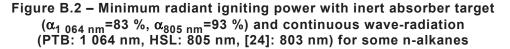

Table B.1 – AIT (auto ignition temperature), MESG (maximum experimental safe gap) and measured ignition powers of the chosen combustibles for inert absorbers as the

^a Conc comb: Concentration of combustible

* HSL = Health and Safety Laboratory of the Health and Safety Executive (UK)

PTB = Physikalisch-Technische Bundesanstalt (Germany)

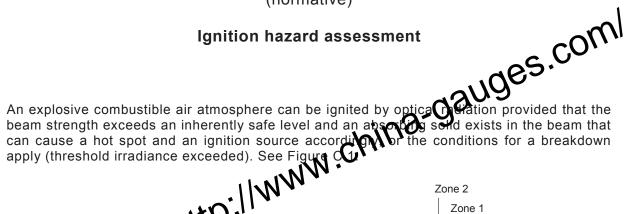

** 24 mW was obtained for a combustible target (coal)


NOTE 1 Data taken from [17][23].

NOTE 2 The given values are for each combustible in its most easily ignitable mixture.

Figure B.1 – Minimum radiant igniting power with inert absorber target ($\alpha_{1 064 nm}$ =83 %, $\alpha_{805 nm}$ =93 %) and continuous wave-radiation of 1 064 nm

IEC 1491/06



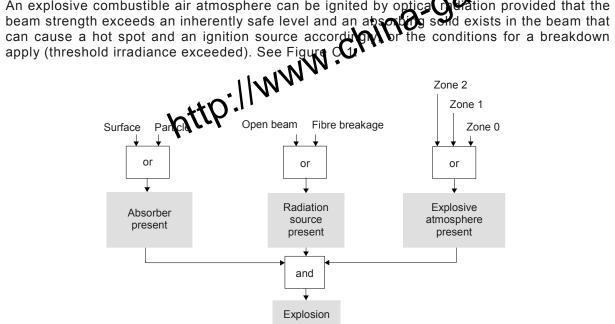

	Q _{e,p} i,min	arphi	AIT	MIE	φ^{MIE}	Q _{e,p} i,min/M
Fuel	μJ	%	°C	μJ		P [•]
70 µs spiked pulse			260 260 NN170 175	0	<u>zua</u>	
N-Pentane	669	3	260	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3,3	2,4
	>55 000	6,4	ch			
Propane	784	5,5		240	5,2	3,3
Diethyl ether	661	1 ³ 14 N	175	190	5,2	3,5
	1 285	0.10				6,8
Ethene	21	5,5	425	82	6,5	2,7
Hydrogen	88	21	560	17	28	5,2
Carbon disulfide	79	6,5	95	9	8,5	9,3
Nanosecond pulses	(20 ns to 200 ns)			·	·	
Propane	499	4,0	470	240	5,2	2,1
Ethene	179	5,5	425	82	6,5	2,2
Hydrogen	44	12	560	17	28	2,6
	46	21				2,7

Table B.2 – Comparison of measured minimum igniting optical pulse energy $(Q_{e,p}^{i,min})$ at 90 µm beam diameter with auto ignition temperatures (AIT) and minimum ignition energies (MIE) from literature [25] at concentrations in percent by volume (φ)

Annex C

IEC 1492/06

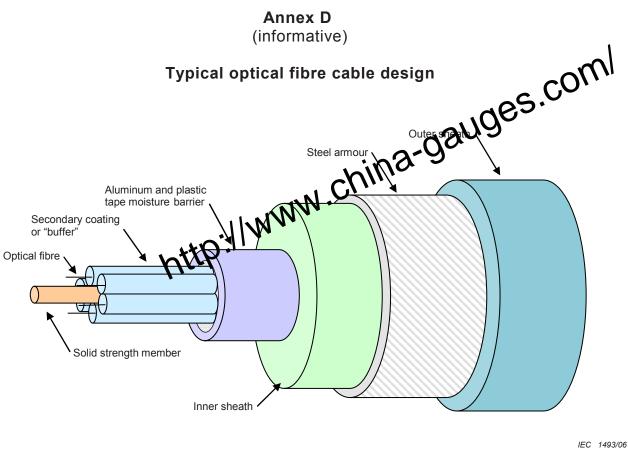
Figure C.1 – Ignition hazard assessment

If these conditions apply, the types of protection b) and c) given in 5.1 shall be used.

Where these conditions do not apply, an ignition hazard may not exist. A further assessment considering all conditions necessary for ignition

- for the specific case or equipment,
- and considering the requirements for the different EPLs according to 4.2

shall be performed and measures necessary derived accordingly.


NOTE 1 Although not covered by this standard, all possible ways to ignite an explosive mixture by optical radiation (see Introduction and this Annex C) must be checked before excluding this ignition source.

It is important to understand that even in the case of open radiation, exceeding the inherently safe level does not readily lead to ignition, as additional provisions (different from the electrical spark ignition) are necessary to start an ignition process.

NOTE 2 As an example, a gas analysis system where in the beam there is no absorbing target that can be heated up to be an ignition source may not create an ignition hazard with respect to the optical radiation. In this specific case, there will be absorption of optical energy in the mixture itself, but it can be easily demonstrated in most cases that there is no heating of the mixture to such an extent that it will be ignited.

This assessment applies also to the use of the protections concepts themselves. When an enclosure for the beam is used that does not allow solid materials to enter it allows the explosive atmosphere to enter), an ignition source is prevented inside this enclosure, provided there exists no other target inside.

If a fibre breakage is assumed, where the concept of interlectivith the breakage detection is used, it may be safe to use the shut down times allowed for eye protection (IEC 60825-2: 2000), if it is improbable that the beam will hit a target with an incendive intensity.

Annex D

Figure D.1 – Example multi-fibre optical cable design for heavy duty applications

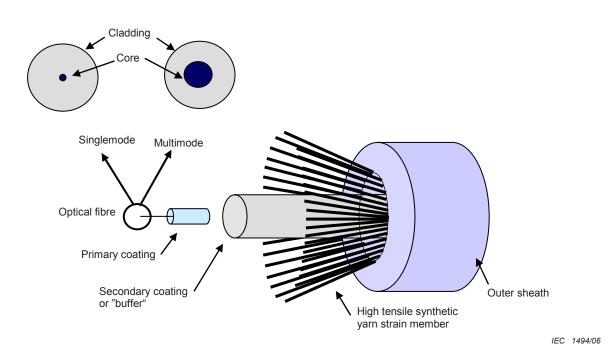


Figure D.2 – Typical single optical fibre cable design

Annex E

(informative)

Introduction of an alternative risk assessment method encompassing "equipment protection levels" for Ex equipment Jugger Historical background

Historically, it has been acknowledged that not all types of protection provide the same level of assurance against the possibility of an incendive condition occurring. The installation standard IEC 60079-14 [8] allocates specific types of protection to specific zones, on the statistical basis that the more likely or frequent the occurrence of an explosive atmosphere, the greater the level of security required against the possibility of an ignition source being active.

Hazardous areas (with the normal exception of coal mining) are divided into zones, according to the degree of hazard. The degree of hazard is defined according to the probability of the occurrence of explosive atmospheres. Generally, no account is taken of the potential consequences of an explosion, nor of other factors such as the toxicity of materials. A true risk assessment would consider all factors.

Acceptance of equipment into each zone is historically based on the type protection. In some cases, the type of protection may be divided into different levels of protection which again historically correlate to zones. For example, intrinsic safety is divided into levels of protection ia and ib. The encapsulation "m" standard includes two levels of protection "ma" and "mb".

In the past, the equipment selection standard has provided a solid link between the type of protection for the equipment and the zone in which the equipment can be used. As noted earlier, nowhere in the IEC system of explosion protection is there any account taken of the potential consequences of an explosion, should it occur.

However, plant operators often make intuitive decisions on extending (or restricting) their zones in order to compensate for this omission. A typical example is the installation of "zone 1 Type" navigation equipment in zone 2 areas of offshore oil production platforms, so that the navigation equipment can remain functional even in the presence of a totally unexpected prolonged gas release. In the other direction, it is reasonable for the owner of a remote, well secured, small pumping station to drive the pump with a "zone 2 Type" motor, even in zone 1, if the total amount of gas available to explode is small and the risk to life and property from such an explosion can be discounted.

The situation became more complex with the publication of the first edition of IEC 60079-26 which introduced additional requirements to be applied for equipment intended to be used in zone 0. Prior to this, Ex ia was considered to be the only technique acceptable in zone 0.

It has been recognized that it is beneficial to identify and mark all products according to their inherent ignition risk. This would make equipment selection easier and provide the ability to better apply a risk assessment approach, where appropriate.

E.2 General

A risk assessment approach for the acceptance of Ex equipment has been introduced as alternative method to the current prescriptive and relatively inflexible approack in equipment to zones. To facilitate this, a system of equipment protection leves the been introduced to clearly indicate the inherent ignition risk of equipment, no matter what type of protection is used.

protection is used.
The system of designating these equipment protection levels is follows.
E.2.1 Coal mining (group I)
E.2.1.1 EPL Ma
Equipment for installation in a calmine, having a "very high" level of protection, which has sufficient security that it is uplikely to become an ignition source, even when left energised in sufficient security that it is unlikely to become an ignition source, even when left energised in the presence of an outbreak of gas.

NOTE Typically, communications circuits and gas detection equipment will be constructed to meet the Ma requirements - for example an Ex ia telephone circuit.

E.2.1.2 EPL Mb

Equipment for installation in a coal mine, having a "high" level of protection, which has sufficient security that it is unlikely to become a source of ignition in the time span between there being an outbreak of gas and the equipment being de-energised.

NOTE Typically, all the coal winning equipment will be constructed to meet the Mb requirements - for example Ex d motors and switchgear.

E.2.2 Gases (group II)

E.2.2.1 **EPL Ga**

Equipment for explosive gas atmospheres, having a "very high" level of protection, which is not a source of ignition in normal operation, expected faults or when subject to rare faults.

E.2.2.2 EPL Gb

Equipment for explosive gas atmospheres, having a "high" level of protection, which is not a source of ignition in normal operation or when subject to faults that may be expected, though not necessarily on a regular basis.

NOTE The majority of the standard protection concepts bring equipment within this equipment protection level.

E.2.2.3 **EPL Gc**

Equipment for explosive gas atmospheres, having an "enhanced" level of protection, which is not a source of ignition in normal operation and which may have some additional protection to ensure that it remains inactive as an ignition source in the case of regular expected occurrences (for example failure of a lamp).

NOTE Typically, this will be Ex n equipment.

E.2.3 **Dusts (group III)**

E.2.3.1 **EPL Da**

E.2.3.1 EPL Da
Equipment for combustible dust atmospheres, having a "very high" level of protection. Which is not a source of ignition in normal operation or when subject to rare faults.
E.2.3.2 EPL Db
Equipment for combustible dust atmospheres, having a "high" ovel of protection, which is not a source of ignition in normal operation or when subject to faults that may be expected, though not necessarily on a regular basis.
E.2.3.3 EPL Dc
Equipment for combustible crist atmospheres, having an "enhanced" level of protection, which is not a source of ignition normal operation and which may have some additional protection

is not a source of ignition in normal operation and which may have some additional protection to ensure that it remains inactive as an ignition source in the case of regular expected occurrences.

For the majority of situations, with typical potential consequences from a resultant explosion, it is intended that the following would apply for use of the equipment in zones. (This is not directly applicable for coal mining, as the zone concept does not generally apply.) See Table E.1.

Equipment protection level	Zone
Ga	0
Gb	1
Gc	2
Da	20
Db	21
Dc	22

Table E.1 – Traditional relationship of EPLs to zones (no additional risk assessment)

E.3 Risk of ignition protection afforded

The various levels of protection of equipment must be capable of functioning in conformity with the operational parameters established by the manufacturer to that level of protection.

Protection afforded	Equipment protection level Group	Performance of protection	Conditions of operation	
Very High	Ма	Two independent means of protection or safe even when two faults occur	Equipment environments functioning when explosive	
, ,	Group I	independently of each other	Anosporre present	
Very High	Ga	Two independent moons of protection or take even when two insults occur	Equipment remains functioning in zones 0,1	
very high	Group II	index endently of each ther	and 2	
Very High		Two independent means of protection or safe even when two faults occur independently of each other	Equipment remains functioning in zones 20, 21 and 22	
High	Mb Group I	Suitable for normal operation and severe operating conditions	Equipment de-energised when explosive atmosphere present	
	Group i	1 0		
High	Gb	Suitable for normal operation and frequently occurring disturbances or	Equipment remains functioning in zones 1 and	
	Group II	equipment where faults are normally taken into account	2	
High	Db	Suitable for normal operation and frequently occurring disturbances or	Equipment remains functioning in zones 21 and 22	
	Group III	equipment where faults are normally taken into account		
Enhanced	Gc	Suitable for normal	Equipment remains	
	Group II	operation	functioning in zone 2	
	Dc	Suitable for normal	Equipment remains	
Enhanced	Group III	operation	functioning in zone 22	

Table E.2 – Description of risk of ignition protection provided

E.4 Implementation

The 4th edition of IEC 60079-14 (encompassing the former requirements of IEC 61241-14) will introduce the EPLs to allow a system of "risk assessment" as an alternative method for the selection of equipment (see Table E.2). Reference will also be included in the classification standards IEC 60079-10 and IEC 61241-10 [14].

The additional marking and the correlation of the existing types of protection are being introduced into the revisions to the following IEC standards [3-7], [9-11]:

- IEC 60079-0 (encompassing the former requirements of IEC 61241-0 [12])
- IEC 60079-1
- IEC 60079-2 (encompassing the former requirements of IEC 61241-4 [13])

- IEC 60079-5 •
- IEC 60079-6 •
- •
- •
- •
- •
- •
- •

IEC 60079-15 IEC 60079-18 (encompassing the former requirements of IEC 61241-11 [15]) IEC 60079-26 IEC 60079-28 the types of protection for explosive the atmosphere rking. For explosive dust atmosphere For the types of protection for explosive that atmospheres the EPLs require additional marking. For explosive dust atmospheres the present system of marking the zones on equipment is being replaced by marking the EPLs.

Bibliography

- [1] IEC 60050-426:1990, International Electrotechnical Vocabulary (IEV) Chapter 426: Electrical apparatus for explosive atmospheres
- [2] IEC 60050-731:1991, International Electrotechnical Vocabulary (IEV), Computer 731: Optical fibre communication
- [3] IEC 60079-1, Electrical apparatus for explosive gas at myspheres Part 1: Flameproof enclosures "d"
 NOTE Harmonized as EN 60079-1:2004 (not modified).
- [4] IEC 60079-2, Electrical apparation rexplosive gas atmospheres Part 2: Pressurized enclosures "p"
 NOTE Harmonized as in 6079-2:2004 (not modified).
- [5] IEC 60079-5, *Electrical apparatus for explosive gas atmospheres Part 5: Powder filling "q"*
- [6] IEC 60079-6, Electrical apparatus for explosive gas atmospheres Part 6: Oil immersion "o"
- [7] IEC 60079-7, Explosive atmospheres Part 7: Equipment protection by increased safety "e"
 NOTE Harmonized as EN 60079-7:2007 (not modified).
- [8] IEC 60079-14, Electrical apparatus for explosive gas atmospheres Part 14: Electrical installations in hazardous areas (other than mines)
 NOTE Harmonized as EN 60079-14:2003 (not modified).
- [9] IEC 60079-15, Electrical apparatus for explosive gas atmospheres Part 15: Construction, test and marking of type of protection "n" electrical apparatus
 NOTE Harmonized as EN 60079-15:2005 (not modified).
- [10] IEC 60079-18, *Explosive atmospheres Part 18: Electrical equipment Requirements for encapsulation "m"*
- [11] IEC 60079-26:2004, Electrical apparatus for explosive gas atmospheres Part 26: Construction, test and marking of Group II Zone 0 electrical apparatus

NOTE Harmonized as EN 60079-26:2004 (not modified).

[12] IEC 61241-0, Electrical apparatus for use in the presence of combustible dust – Part 0: General requirements

NOTE Harmonized as EN 61241-0:2006 (modified).

- [13] IEC 61241-4, Electrical apparatus for use in the presence of combustible dust Part 4: Type of protection "pD" NOTE Harmonized as EN 61241-4:2006 (not modified).
- [14] IEC 61241-10, Electrical apparatus for use in the presence of combustible dust Part 10: Classification of areas where combustible dusts are or may be present

NOTE Harmonized as EN 61241-10:2004 (not modified).

[15] IEC 61241-11, Electrical apparatus for use in the presence of combustible dust – Part 11: Protection by intrinsic safety 'iD'

- NOTE Harmonized as EN 61241-11:2006 (not modified).
 [16] IEC 61241-18, Electrical apparatus for use in the presence of combustible dust Part 18: Protection by encapsulation 'mD' NOTE Harmonized as EN 61241-18:2004 (not modified).
 [17] CARLETON, F.B., BOTHE, H., PROUST, C., and HAWKSWORTH, S., Prenormative Research on the Use of Optics in Potental Explosive Atmospheres, European Commission Report EUR 19617 EN, 2000 [18] McGEEHIN, P., Optical Techniques in Indust
- in Industrial Measurements: Safety in Hazardous Environments, European Commission Report EC 16011 EN, 1995
- [19] WELZEL, M.M., Entzündung von explosionsfähigen Dampf/Luft- und Gas/Luft-Gemischen durch kontinuierliche optische Strahlung, PTB-Report W-67, ISBN 3-89429-812-X, 1996
- [20] SCHENK, S., Entzündung explosionsfähiger Atmosphäre durch gepulste optische Strahlung, PTB-Report Th-Ex 17, ISBN 3-89701-667-2, 2001
- [21] WELZEL, M.M., SCHENK, S., HAU, M., CAMMENGA, H.K., and BOTHE, H., J. Hazard. Mater. A72:1 (2000)
- [22] SCHENK, S., BOTHE, H., and CAMMENGA, H.K., in BRADLEY, D., Proc. Third International Seminar on Fire and Explosions Hazards 2000, 2001, p. 495
- [23] ADLER, J., CARLETON, F.B. and WEINBERG, F.J., Proc. R. Soc. Lond. A (1993) 440, 443-460
- [24] DUBANIEWICZ, T.H., CASHDOLLAR, K.L., GREEN, G.M. and CHAIKEN, R.F., J. Loss Prevent. Proc. 13: 349-359 (2000)
- [25] DECHEMA, PTB, BAM: ChemSafe: Sicherheitstechnische Datenbank, Karlsruhe. STN Datenbank, 1995
- [26] SYAGE, J.A., FOURNIER, E.W., RIANDA, R. and COHEN, R.B., J. Appl. Phys. 64:1499
- [27] WILDAY, A.J., WRAY, A.M., EICKHOFF, F., UNRUH, M., HALAMA, S., FAE, E., CONDE LAZARO, E., REINA PERBAL, P
- [28] Determination of Safety Categories of Electrical Devices Used in Potentially Explosive Atmospheres (SAFEC) Contract SMT4-CT98-2255, http://www.prosicht.com/EC-Projects/SAFEC/finalrp4.pdf (Safetynet, Prosicht, Germany, 2000).
- [29] ANSI/ISA-TR12.21.01-2004, Use of Fiber Optic Systems in Class I Hazardous (Classified) Locations. ISA, Research Triangle Park, North Carolina, USA, 2004.

Annex ZA

(normative)

Normative references to international publications

with their corresponding European publications edition cited applies. For undeter Socument. For dated The following referenced documents are indispensable for the application of the socument. For dated references, only the edition cited applies. For undated references, the datest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

Publication IEC 60079	<u>Year</u> Series	Title Electron apparatus for explosive gas atmospheres	<u>EN/HD</u> EN 60079	<u>Year</u> Series
IEC 60079-0 (mod)	_ 1)	Electrical apparatus for explosive gas atmospheres - Part 0: General requirements	EN 60079-0	2006 2)
IEC 60079-10	_ 1)	Electrical apparatus for explosive gas atmospheres - Part 10: Classification of hazardous areas	EN 60079-10	2003 ²⁾
IEC 60079-11	_ 1)	Explosive atmospheres - Part 11: Equipment protection by intrinsic safety "i"	EN 60079-11	2007 ²⁾
IEC 60825-2	_ 1)	Safety of laser products - Part 2: Safety of optical fibre communication systems (OFCS)	EN 60825-2	2004 2)
IEC 61508	Series	Functional safety of electrical/electronic/programmable electronic safety-related systems	EN 61508	Series
IEC 61511	Series	Functional safety - Safety instrumented systems for the process industry sector	EN 61511	Series

¹⁾ Undated reference.

²⁾ Valid edition at date of issue.

Annex ZZ

(informative)

Coverage of Essential Requirements of EC Directives

This European Standard has been prepared under a mandate given to CENELEC Luropean This European Standard has been prepared under a mandate given to CENELEC Commission and the European Free Trade Association and within its scope the stationed following essential requirements out of those given in Annex II of the EC Directle 4/0/EC:
ER 1.0.1 to ER 1.0.4, ER 1.0.5 (partly)
ER 1.2.1, ER 1.2.6, ER 1.2.8 to ER 1.2.9
ER 1.3.1
ER 1.5.1
ER 2.1.1 (partly) d covers only the

- ER 2.1.1 (partly)
- ER 2.2.1 (partly)
- ER 2.3.1 (partly) _

Compliance with this standard provides one means of conformity with the specified essential requirements of the Directive concerned.

WARNING: Other requirements and other EC Directives may be applicable to the products falling within the scope of this standard.

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

-based solutions

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With British Standards Online (BSOL) you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a BSI Subscribing Member.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop

With a Multi-User Network Licence (MUNL) you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means - electronic, photocopying, recording or otherwise - without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com

Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com

Knowledge Centre Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com

Copyright & Licensing Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

...making excellence a habit.™